Sayfalar

GÜNEŞ ENERJİSİ VE TEKNOLOJİLERİ

Parabolik Güneş Santrali
Güneş Kollektörleri

           Güneşin çekirdeğinde yer alan füzyon süreci ile açığa çıkan ışıma enerjisidir, güneşteki hidrojen gazının helyuma dönüşmesi şeklindeki füzyon sürecinden kaynaklanır. Dünya atmosferinin dışında güneş enerjisinin şiddeti, aşağı yukarı sabit ve 1370 W/m² değerindedir, ancak yeryüzünde 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970'lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir.


            Güneş enerjisi teknolojileri yöntem, malzeme ve teknolojik düzey açısından çok çeşitlilik göstermekle birlikte iki ana gruba ayrılabilir:
            Bu sistemlerde öncelikle güneş enerjisinden ısı elde edilir. Bu ısı doğrudan kullanılabileceği gibi elektrik üretiminde de kullanılabilir.
Güneş Pilleri: Fotovoltaik piller de denen bu yarı-iletken malzemeler güneş ışığını doğrudan elektriğe çevirirler.
Düşük Sıcaklık Sistemleri
            Düzlemsel Güneş Kollektörleri: Güneş enerjisini toplayan ve bir akışkana ısı olarak aktaran çeşitli tür ve biçimlerdeki aygıtlardır. En çok evlerde sıcak su ısıtma amacıyla kullanılmaktadır. Ulaştıkları sıcaklık 70°C civarındadır. Düzlemsel güneş kollektörleri, üstten alta doğru, camdan yapılan üst örtü, cam ile absorban plaka arasında yeterince boşluk, metal veya plastik absorban plaka, arka ve yan yalıtım ve bu bölümleri içine alan bir kasadan oluşmuştur. Absorban plakanın yüzeyi genellikte koyu renkte olup bazen seçiciliği artıran bir madde ile kaplanır. Kollektörler, yörenin enlemine bağlı olarak güneşi maksimum alacak şekilde, sabit bir açıyla yerleştirilirler. Güneş kollektörlü sistemler tabii dolaşımlı ve pompalı olmak üzere ikiye ayrılır. Bu sistemler evlerin yanında, yüzme havuzları ve sanayi tesisleri için de sıcak su sağlanmasında kullanılır. Bu konudaki Ar-Ge çalışmaları sürmekle birlikte, bu sistemler tamamen ticari ortama girmiş durumdadırlar. Dünya genelinde kurulu bulunan güneş kollektörü alanı 30 milyon m2' nin üzerindedir. En fazla güneş kollektörü bulunan ülkeler arasında ABD, Japonya, Avustralya İsrail ve Yunanistan yer almaktadır. Türkiye, 7,5 milyon m² kurulu kollektör alanı ile dünyanın önde gelen ülkelerinden biri konumundadır. 
 
Yoğunlaştırıcı Sistemler
            Parabolik Oluk Kollektörler: Doğrusal yoğunlaştırıcı termal sistemlerin en yaygınıdır. Kollektörler, kesiti parabolik olan yoğunlaştırıcı dizilerden oluşur. Kolektörün iç kısmındaki yansıtıcı yüzeyler, güneş enerjisini, kollektörün odağında yer alan ve boydan boya uzanan siyah bir absorban boruya odaklarlar. Kollektörler genellikle, güneşin doğudan batıya hareketini izleyen tek eksenli bir izleme sistemi üzerine yerleştirilirler. Enerjiyi toplamak için absorban boruda bir sıvı dolaştırılır. Toplanan ısı, elektrik üretimi için enerji santraline gönderilir. Bu sistemler yoğunlaştırma yaptıkları için daha yüksek sıcaklığa ulaşabilirler. (350-400°C)       Doğrusal yoğunlaştırıcı termal sistemler ticari ortama girmiş olup, bu sistemlerin en büyük ve en tanınmış olanı 350 MW gücündeki şimdiki Kramer&Junction eski Luz International santralleridir. 
PARABOLİK OLUK KOLEKTÖRLER
350 MW gücünde parabolik oluk güneş santralı-Kaliforniya
  Parabolik Çanak Sistemler: İki eksende güneşi takip ederek, sürekli olarak güneşi odaklama bölgesine yoğunlaştırırlar. Termal enerji, odaklama bölgesinden uygun bir çalışma sıvısı ile alınarak, termodinamik bir dolaşıma gönderilebilir ya da odak bölgesine monte edilen bir Stirling makine yardımı ile elektrik enerjisine çevrilebilir. Çanak-Stirling bileşimiyle güneş enerjisinin elektriğe dönüştürülmesinde % 30 civarında verim elde edilmiştir.
   
Merkezi Alıcı Sistemler: Tek tek odaklama yapan ve heliostat adı verilen aynalardan oluşan bir alan, güneş enerjisini, alıcı denen bir kule üzerine monte edilmiş ısı eşanjörüne yansıtır ve yoğunlaştırır. Alıcıda bulunan ve içinden akışkan geçen boru yumağı, güneş enerjisini üç boyutta hacimsel olarak absorbe eder. Bu sıvı, Rankine makineye pompalanarak elektrik üretilir. Bu sistemlerde ısı aktarım akışkanı olarak hava da kullanılabilir, bu durumda sıcaklık 800°C'ye çıkar. Heliostatlar bilgisayar tarafından sürekli kontrol edilerek, alıcının sürekli güneş alması sağlanır. Bu sistemlerin kapasite ve sıcaklıkları, sanayi ile kıyaslanabilir düzeyde olup Ar-Ge çalışmaları devam etmektedir.

Güneş Kollektörlü Sıcak Su Sistemleri
            Güneş kollektörlü sıcak su sistemleri, güneş enerjisini toplayan düzlemsel kollektörler, ısınan suyun toplandığı depo ve bu iki kısım arasında bağlantıyı sağlayan yalıtımlı borular, pompa ve kontrol edici gibi sistemi tamamlayan elemanlardan oluşmaktadır. 
Güneş Kollektörlü Sıcak Su Sistemi
 
Güneş kollektörlü sistemler tabii dolaşımlı ve pompalı olmak üzere ikiye ayrılırlar. Her iki sistem de ayrıca açık ve kapalı sistem olarak dizayn edilirler..
Düzlemsel Güneş Kollektörleri
Düzlemsel güneş kollektörleri, güneş enerjisinin toplandığı ve herhangi bir akışkana aktarıldığı çeşitli tür ve biçimlerdeki aygıtlardır.
Düzlemsel güneş kollektörleri, üstten alta doğru, camdan yapılan üst örtü, cam ile absorban plaka arasında yeterince boşluk, kollektörün en önemli parçası olan absorban plaka, arka ve yan yalıtım ve yukardaki bölümleri içine alan bir kasadan oluşmuştur. 
Yoğunlaştırıcı Sistemler İle Elektrik Üretimi
Bugüne kadar güneş enerjisi ile elektrik üretiminde başlıca iki sistem kullanılmıştır. Birincisi, güneş enerjisini direkt olarak elektrik enerjisine dönüştüren fotovoltaik sistemlerdir. Fakat geçen 20 yıl içerisinde fotovoltaik sistem uygulamalarının artışına rağmen, teknolojisinin karmaşıklığı ve maliyetinin yüksek oluşu, geniş çapta elektrik üretimi için yetersiz olduğunu ortaya çıkarmıştır. İkinci seçenek ise, güneş enerjisinin yoğunlaştırıcı sistemler kullanılarak odaklanması sonucunda elde edilen kızgın buhardan, konvansiyonel yöntemlerle elektrik üretimidir.
            Güneş termal güç santralleri, birincil enerji kaynağı olarak güneş enerjisini kullanan elektrik üretim sistemleridir. Bu sistemler temelde aynı yöntemle çalışmakla birlikte, güneş enerjisini toplama yöntemleri, yani kullanılan kollektörler bakımından farklılık gösterirler.  Toplama elemanı olarak parabolik oluk kollektörlerin kullanıldığı güç santrallerinde, çalışma sıvısı kollektörlerin odaklarına yerleştirilmiş olan absorban boru içerisinde dolaştırılır. Daha sonra, ısınan bu sıvıdan eşanjörler yardımı ile kızgın buhar elde edilir. Parabolik çanak kollektörler kullanılan sistemlerde de ya aynı yöntem kullanılır ya da merkeze yerleştirilen bir motor (Stirling) yardımı ile direkt olarak elektrik üretilir. Merkezi alıcılı sistemlerde ise, güneş ışınları düzlemsel aynalar (heliostat) yardımı ile alıcı denilen ısı eşanjörüne yansıtılır. Alıcıda ısıtılan çalışma sıvısından konvansiyonel yollarla elektrik elde edilir.
            Güneş Termal Güç Santrallerinin Tasarım İlkeleri
            Güneş termal güç santrallerinin tasarımında dikkate alınması gereken en önemli parametreler şunlardır;
            - Bölge seçimi
            - Güneş enerjisi ve iklim değerlendirmesi
            - Parametrelerin optimizasyonu
            - Bölge Seçimi
            - Santralın tesis edileceği ideal bölge seçilirken aşağıdaki kriterler göz önünde bulundurulmalıdır.
            -Yıllık yağış miktarının düşük olması,
            -Bulutsuz ve sissiz bir atmosfere sahip olması,
            -Hava kirliliğin olmaması,
            -Ormanlık ve ağaçlık bölgelerden uzak olması,
            -Rüzgar hızının düşük olması.
            Parabolik Oluk Kollektörlerle Elektrik Üretimi:
            Parabolik oluk kollektörlü güç santralleri, güneş tarlası, buhar ve elektrik üretim sistemlerinden oluşur. Bu santrallerde proses ısısı için, doğrusal yoğunlaştırma yapılarak, güneş enerjisinden 300 øC'nin üzerinde sıcaklık elde edilir ve ısı transfer akışkanı olarak yüksek sıcaklıklara dayanıklı termal yağ kullanılır.
           

Güneş tarlası; bağımsız üniteler şeklinde birbirine paralel bağlanmış parabolik oluk kollektör gruplarından oluşan alandır. Bu üniteler, gelen güneş enerjisini 4 mm kalınlığında ve yüksek yansıtma oranına (% 94) sahip aynalar vasıtasıyla, odakta bulunan alıcı boru üzerine yansıtırlar. Parabolik oluk kollektörler grupları yatay eksen boyunca dönmelerini engellemeyen metal yapılarla desteklenmiştir. Sistemde aynaların güneşi izlemesini sağlayan bir sensör bulunur.
            Isı toplama elemanı; cam tüp, yüzeyi yaklaşık % 97 lik bir absorbtiviteye sahip çelik alıcı boru ve cam-metal birleştiricilerden oluşur. Alıcı boru üzerinde meydana gelen yüksek sıcaklık nedeniyle oluşan ısı kayıplarını azaltmak için, cam tüp ile alıcı boru arasındaki hava vakumlanmıştır.  Bu boşluk basıncı yaklaşık 0.1 atm dir. Isıya dayanıklı cam tüp, yüksek bir geçirgenliğe ve radyasyon kayıplarını en aza indirgemek için antireflektif bir yapıya sahiptir. Sıcaklık nedeniyle meydana gelen genleşmelerin etkilerini gidermek için körüklü cam-metal birleştiriciler kullanılmaktadır.
            Güneş tarlası kontrol sistemi; genel kontrol sistemi ve her kollektör grubunda bulunan lokal kontrol ünitelerinden oluşur. Genel kontrol sistemi güneşlenme durumunu izler ve buna göre sistemi tamamen ya da kısmen açar ya da kapatır. Bu işlem, lokal kontrol üniteleriyle iletişim içinde yapılır.  Lokal kontrol üniteleri, her kollektör grubunu ayrı ayrı kontrol ederek güneşin takip edilmesini sağlarlar.
            Buhar üretim sistemi; ön ısıtma, buhar üretimi ve süper ısıtma bölümlerinden oluşur. Bu bölümlerden geçirilerek 371C° ve 100 bar basınca yükseltilen buhar, elektrik üretimi için türbine gönderilir. Üretimden sonra yeterince soğumayan buhar, yeni bir çevrime gönderilmeden, yeniden aynı sıcaklığa kadar ısıtılır ve tekrar türbine gönderilir. Bu ikinci çevrimden sonra artık soğuyan buhar, sıkıştırılıp sıvı hale getirildikten sonra yeni bir çevrime gönderilir.
            Güneş enerjili güç santrallerinde, güneş enerjisinin yetersiz kaldığı durumlarda, kesintisiz elektrik üretimini sağlamak için ilave ısıtıcılar kullanılır. Petrolle ya da doğal gazla çalışan ilave ısıtıcılar, aynı sıcaklık ve basınçta buhar üretirler. Şekilde gelen güneş enerjisinin elektriğe dönüştürülmesi ve kaçaklar görülmektedir.
3.3.Güneş Pilleri ( Fotovoltaik Piller )
            Güneş pilleri (fotovoltaik piller), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş pillerinin alanları genellikle 100 cm² civarında, kalınlıkları ise 0,2-0,4 mm arasındadır.
Güneş pilleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Pilin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir.
Güneş enerjisi, güneş pilinin yapısına bağlı olarak % 5 ile % 20 arasında bir verimle elektrik enerjisine çevrilebilir.
            Güç çıkışını artırmak amacıyla çok sayıda güneş pili birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş pili modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt'tan megaWatt'lara kadar sistem oluşturulur.

GÜNEŞ PİLİ MODÜLÜ
 
Güneş Pillerinin Yapımında Kullanılan Malzemeler
            Güneş pilleri pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır:
            -Kristal Silisyum
            -Galyum Arsenit (GaAs)
            -Amorf Silisyum
            -Kadmiyum Tellürid (CdTe)
            -Bakır İndiyum Diselenid (CuInSe2)
            -Optik Yoğunlaştırıcılı Hücreler:.
Son Yıllarda Üzerinde Çalışılan Güneş Pilleri:
            Ticari ortama girmiş olan geleneksel Si güneş pillerinin yerini alabilecek verimleri aynı ama üretim teknolojileri daha kolay ve daha ucuz olan güneş pilleri üzerinde de son yıllarda çalışmalar yoğunlaştırılmıştır.
                Bunlar; foto elektrokimyasal çok kristalli Titanyum Dioksit piller, polimer yapılı Plastik piller ve güneş spektrumunun çeşitli dalga boylarına uyum sağlayacak şekilde üretilebilen enerji band aralığına sahip Kuantum güneş pilleri gibi yeni teknolojilerdir.




3.3.2.Güneş Pili Sistemleri
            Güneş pilleri, elektrik enerjisinin gerekli olduğu her uygulamada kullanılabilir. Güneş pili modülleri uygulamaya bağlı olarak, akümülatörler, invertörler, akü şarj denetim aygıtları ve çeşitli elektronik destek devreleri ile birlikte kullanılarak bir günes pili sistemi (fotovoltaik sistem) oluştururlar. Bu sistemler, özellikle yerleşim yerlerinden uzak, elektrik şebekesi olmayan yörelerde, jeneratöre yakıt taşımanın zor ve pahalı olduğu durumlarda kullanılırlar.
Bunun dışında dizel jeneratörler ya da başka güç sistemleri ile birlikte karma olarak kullanılmaları da mümkündür.
            Bu sistemlerde yeterli sayıda güneş pili modülü, enerji kaynağı olarak kullanılır. Güneşin yetersiz olduğu zamanlarda ya da özellikle gece süresince kullanılmak üzere genellikle sistemde akümülatör bulundurulur. Güneş pili modülleri gün boyunca elektrik enerjisi üreterek bunu akümülatörde depolar, yüke gerekli olan enerji akümülatörden alınır. Akünün aşırı şarj ve deşarj olarak zarar görmesini engellemek için kullanılan denetim birimi ise akünün durumuna göre, ya güneş pillerinden gelen akımı ya da yükün çektiği akımı keser. Şebeke uyumlu alternatif akım elektriğinin gerekli olduğu uygulamalarda, sisteme bir invertör eklenerek akümülatördeki DC gerilim, 220 V, 50 Hz.lik sinüs dalgasına dönüştürülür. Benzer şekilde, uygulamanın şekline göre çeşitli destek elektronik devreler sisteme katılabilir. Bazı sistemlerde, güneş pillerinin maksimum güç noktasında çalışmasını sağlayan maksimum güç noktası izleyici cihazı bulunur. Aşağıda şebekeden bağımsız bir güneş pili enerji sisteminin şeması verilmektedir.

            Şebeke bağlantılı güneş pili sistemleri yüksek güçte-satral boyutunda sistemler şeklinde olabileceği gibi daha çok görülen uygulaması binalarda küçük güçlü kullanım şeklindedir. Bu sistemlerde örneğin bir konutun elektrik gereksinimi karşılanırken, üretilen fazla enerji elektrik şebekesine satılır, yeterli enerjinin üretilmediği durumlarda ise şebekeden enerji alınır. Böyle bir sistemde enerji depolaması yapmaya gerek yoktur, yalnızca üretilen DC elektriğin, AC elektriğe çevrilmesi ve şebeke uyumlu olması yeterlidir.
            Güneş pili sistemlerinin şebekeden bağımsız (stand-alone) olarak kullanıldığı tipik uygulama alanları aşağıda sıralanmıştır.
            - Haberleşme istasyonları, kırsal radyo, telsiz ve telefon sistemleri
            - Petrol boru hatlarının katodik koruması
            - Metal yapıların (köprüler, kuleler vb) korozyondan koruması
            - Elektrik ve su dağıtım sistemlerinde yapılan telemetrik ölçümler, hava gözlem istasyonları
            - Bina içi ya da dışı aydınlatma
            - Dağevleri ya da yerleşim yerlerinden uzaktaki evlerde TV, radyo, buzdolabı gibi elektrikli aygıtların çalıştırılması
            - Tarımsal sulama ya da ev kullanımı amacıyla su pompajı
            - Orman gözetleme kuleleri
            - Deniz fenerleri
            - İlkyardım, alarm ve güvenlik sistemleri
            - Deprem ve hava gözlem istasyonları
            - İlaç ve aşı soğutma






Hiç yorum yok: